新闻资讯

新闻中心
首页>新闻资讯>新闻中心

2024-05-27 11:52:37

二氧化硅气凝胶隔热材料的超临界干燥制备方法与流程

本发明属于高分子技术领域,具体涉及一种二氧化硅气凝胶隔热材料的超临界干燥制备方法。



背景技术:

二氧化硅气凝胶是一种结构可控的轻质纳米多孔材料,具有许多优异的性能,如高孔隙率、高比表面积、低密度、低热导率等。国内外制备二氧化硅气凝胶通常都以正硅酸甲酯,正硅酸乙酯或“水玻璃”为原料,采用溶胶—凝胶法,经常压干燥制得,如中国专利200810042222.4,200910042159.5,201210123519.x,cn201210121968.0,cn201210114691.9等均以有机或无机硅源为前驱体制备了介孔二氧化硅气凝胶材料。其普遍存在的问题是制备周期较长、不能制备亲水性材料、连续生产能力较弱等,不利于规模化作业。

陈国、张君等(中国专利,申请号201210078237.2)公开了用正硅酸乙酯和硅溶胶为原料,经老化后超临界干燥制备二氧化硅气凝胶的方法。但是该种超临界干燥方式的温度高达250℃,压力为22mpa,耗费大量能源,操作危险,且采用正硅酸四乙酯作为硅源,大大增加了气凝胶的成本,且不利于规模化生产;类似的,中国专利(申请号201510911661.4)采用了溶剂的超临界干燥方法,压力与温度也相对较高,硅源亦同样采用了昂贵的有机硅源,从而会导致气凝胶的生产成本增加。

综上,现阶段超临界干燥制备二氧化硅气凝胶的技术均以有机硅源为前驱体,制备成本较高,从而导致目前市场上的二氧化硅气凝胶的价格居高不下。



技术实现要素:

本发明的目的在于提供一种低密度的二氧化硅气凝胶的超临界干燥制备方法,大大降低了溶剂交换时间,减少了生产成本,同时超临界干燥缩短了制备周期。

本发明解决上述技术问题所采用的技术方案是:一种二氧化硅气凝胶隔热材料的超临界干燥制备方法,其特征在于:包括如下步骤:

1)首先使用一定量的去离子水稀释水玻璃溶液;

2)将稀释后的水玻璃溶液慢速加入到浓盐酸溶液中,不断搅拌,使之混合均匀,得到强酸性的硅溶胶;

3)将该酸性二氧化硅溶胶溶液旋转蒸发掉部分水分,取出,加入低表面张力的水溶性极性溶剂,搅拌使之混合均匀,再加入一定量步骤1)中的水玻璃溶液调节溶液ph到5.5-6,即可形成凝胶;

4)向步骤3)所得凝胶中加入水溶性极性溶剂老化凝胶2~12小时,之后将所得湿凝胶置于萃取釜中,高压密闭,通入超临界co2,与湿凝胶接触,进行萃取干燥,干燥时间为2-5h。

按上述方案,步骤1)中所述水玻璃溶液为钠水玻璃、锂水玻璃或钾水玻璃,其模数为2.5~3.55,所述的水玻璃溶液与去离子水的体积比为1:0.5到1:3,。

按上述方案,步骤2)中所用浓盐酸的浓度为8-12mol/l,搅拌转速为300~600r/min。

按上述方案,步骤2)中所用浓盐酸的浓度为12mol/l。

按上述方案,步骤2)中所得的强酸性的硅溶胶ph值小于1.5。

按上述方案,步骤3)中旋转蒸发的温度为40-75℃,旋转蒸发时间为2-15min。

按上述方案,步骤3)和步骤4)中水溶性极性溶剂为乙醇、甲醇、异丙醇、丙醇、丙酮。

按上述方案,步骤3)中所述水玻璃溶液为钠水玻璃、锂水玻璃或钾水玻璃,其浓度可为3~5.5mol/l。

按上述方案,步骤4)中萃取釜中的温度可为35-45℃,压力可为7.4-8.5mpa。

本发明采用廉价的水玻璃作为硅源,通过对硅溶胶ph值的改造使之能够与乙醇等有机溶剂互溶,形成以有机溶剂为主溶剂的溶胶、凝胶。而通过查阅相关文献可发现超临界状态的二氧化碳对乙醇等有溶剂与水的溶解度之比在10左右,恰好可以一次性将有机溶剂与水提取出来,从而达到溶剂交换的目的。萃取完成之后凝胶孔隙内的流体全部变为co2,通过改变温度与压力,可使co2从超临界态直接变为气态,再次期间,毛细管压力始终为0,从而得到高品质的二氧化硅气凝胶。

本发明的有益效果在于:以廉价的工业水玻璃为前驱体,采用创新性的工艺流程,以有机溶剂做为其主要溶剂,得到湿凝胶,极大缩短了溶剂交换时间与制备成本。目前市售的二氧化硅气凝胶绝大部分采用超临界干燥方式制备而成,而它们所用的硅源为正硅酸四乙酯,该种试剂价格昂贵,为水玻璃的100倍以上。部分气凝胶采用常压干燥方式制备,虽然这种方式同样可以水玻璃为硅源,但是该种方法只能制备疏水型气凝胶(不耐高温,250℃以下时使用),不能制备耐高温的清水型气凝胶,且其制备周期长(1.5天以上),而本发明工艺在半天内即可完成。

具体实施方式

下面结合具体实施例来对本发明作进一步详细地描述。

实施例1

1)取70ml钠水玻璃(3.55模,32.16%),用70ml去离子水稀释,搅拌均匀,得到溶液a。后将溶液a缓慢倒入20ml未经稀释的浓盐酸(12mol/l)中,边加入边搅拌(搅拌转速为300~600r/min),得到强酸性的硅溶胶溶液b,所得的强酸性的硅溶胶ph值小于1.5;

2)取100ml该酸性硅溶胶,置于旋转蒸发仪中,设定温度为50℃,旋蒸时间为10分钟,得到70ml硅溶胶,取出溶胶,向其中加入70ml无水乙醇,磁力搅拌使之混合均匀。之后向其中逐滴加入a,调节溶液ph至6,~20min形成凝胶;

3)向形成的凝胶中加入无水乙醇老化4小时,之后将凝胶置于高压釜中,在7.4mpa,35℃条件下进行超临界co2萃取干燥2h。最后得到亲水型二氧化硅气凝胶隔热材料。其密度:0.088g/cm3,孔隙率:96%,热导率:0.019w/m·k。

实施例2

1)取70ml锂水玻璃(3.4模,30.64%),用70ml去离子水稀释,搅拌均匀,得到溶液a。后将混合溶液缓慢倒入20ml未经稀释的浓盐酸(12mol/l)中,边加入边搅拌(搅拌转速为300~600r/min),得到强酸性的硅溶胶溶液,所得的强酸性的硅溶胶ph值小于1.5;

2)取100ml该酸性硅溶胶,置于旋转蒸发仪中,设定温度为60℃,旋蒸时间为5分钟,得到70ml硅溶胶,取出溶胶,向其中加入70ml无水甲醇,磁力搅拌使之混合均匀。之后向其中逐滴加入步骤1)中的溶液a,调节溶液ph至6,~15min形成凝胶;

3)向形成的凝胶中加入无水甲醇老化3小时,之后将凝胶置于高压釜中,在7.6mpa,38℃条件下进行超临界co2萃取干燥3h。最后得到亲水型二氧化硅气凝胶隔热材料。其密度:0.092g/cm3,孔隙率:95.82%,热导率:0.020w/m·k。

实施例3

1)取70ml钾水玻璃(3.2模,29.8%),用70ml去离子水稀释,搅拌均匀,得到溶液a。后将混合溶液缓慢倒入20ml浓盐酸(10mol/l)中,边加入边搅拌(搅拌转速为300~600r/min),得到强酸性的硅溶胶溶液,所得的强酸性的硅溶胶ph值小于1.5;

2)取100ml该酸性硅溶胶,置于旋转蒸发仪中,设定温度为70℃,旋蒸时间为3分钟,得到70ml硅溶胶,取出溶胶,向其中加入70ml丙酮,磁力搅拌使之混合均匀。之后向其中逐滴加入步骤1)中的溶液a,调节溶液ph至6,~20min形成凝胶;

3)向形成的凝胶中加入丙酮老化6小时,之后将凝胶置于高压釜中,在8mpa,45℃条件下进行超临界co2萃取干燥4h。最后得到亲水型二氧化硅气凝胶隔热材料。其密度:0.103g/cm3,孔隙率:95.32%,热导率:0.022w/m·k。

实施例4

1)取70ml钠水玻璃(3.24模,31.89%),用70ml去离子水稀释,搅拌均匀,得到溶液a。后将混合溶液缓慢倒入20ml未经稀释的浓盐酸(12mol/l)中,边加入边搅拌(搅拌转速为300~600r/min),得到强酸性的硅溶胶溶液,所得的强酸性的硅溶胶ph值小于1.5;

2)取100ml该酸性硅溶胶,置于旋转蒸发仪中,设定温度为50℃,旋蒸时间为10分钟,得到70ml硅溶胶,取出溶胶,向其中加入70ml无水乙醇,磁力搅拌使之混合均匀。之后向其中逐滴加入步骤1)中的溶液a,调节溶液ph至5.5,~25min形成凝胶;

3)向形成的凝胶中加入无水乙醇老化4小时,之后将凝胶置于高压釜中,在8.5mpa,35℃条件下进行超临界co2萃取干燥4h。最后得到亲水型二氧化硅气凝胶隔热材料。其密度:0.095g/cm3,孔隙率:95.68%,热导率:0.023w/m·k。

推荐新闻