新闻资讯

新闻中心
首页>新闻资讯>新闻中心

2024-05-27 11:51:10

气凝胶复合超细玻纤棉毡及其制备方法和作为液氮吸附材料的应用与流程

本发明属于气凝胶材料制备技术领域,具体涉及一种气凝胶复合超细玻纤棉毡及其制备方法和作为液氮吸附材料的应用。



背景技术:

气凝胶是一种新型低密度、结构可控,由胶体粒子或高聚物分子相互交联而成的具有三维网络结构的轻质纳米多孔非晶固态材料,由于其独特的纳米级孔结构特征,使它具有低密度、高比表面积、低热导率、低介电常数以及孔隙率高达80~99.8%等特性,是当前新材料的研究热点之一。由纤维类增强材料与气凝胶复合制成的隔热保温材料在石化管道保温、新能源电池的阻燃隔热、高铁车厢隔热保温等领域已经得到了应用。

液氮生物容器(或称液氮罐)由内胆、外胆、绝热材料、颈管、抽气嘴等组合而成,内胆和外胆之间填充绝热材料并抽真空起保温绝热作用,以使内胆中的液氮能维持-196℃的温度,而装有生物材料的容器则放置于内胆中,依靠充装于其周边的液氮实现对各类生物材料的低温保存。航空型液氮生物容器是一类专用于运输生物材料的装置,该类容器虽已进行了专门的防震设计以降低运输过程中因剧烈的碰撞和震动带来的液氮泄漏,但安全隐患仍然存在。同时,运输中容器因晃动和受冲击也导致了液氮蒸发量的增加,从而缩短了液氮生物容器的有效工作时间。为此,当前有将玻璃纤维针刺毡填充于液氮生物容器内胆,对充注于其中的液氮起到吸附和固定作用,但这些材料在使用中并不十分理想。



技术实现要素:

针对现有技术存在的上述技术问题,本发明的目的在于提供一种气凝胶复合超细玻纤棉毡及其制备方法和作为液氮吸附材料的应用。本发明采用超细玻纤棉毡作基材,在制备气凝胶的溶胶-凝胶工艺过程中将基材与气凝胶复合,制成气凝胶复合超细玻纤棉毡,其中具有纳米孔网络结构的气凝胶填充并充满了超细玻纤棉毡的纤维间的空隙中。该气凝胶复合超细玻纤棉毡应用于航空型液氮生物容器中吸附并存储液氮,避免了生物容器运输过程中液氮快速蒸发及泄漏事故的发生。

所述的气凝胶复合超细玻纤棉毡中,与基材复合的气凝胶是二氧化硅气凝胶。

所述一种气凝胶复合超细玻纤棉毡的制备方法其特征在于包括如下步骤:

1)将超细玻纤棉(叩解度40°sr~45°sr)置于打浆机中疏解20min~40min,然后放入配浆池中,加入适量分散剂和ph调节剂(调节ph至3-4),充分搅拌使纤维分散均匀,采用斜网造纸机或侧流式圆网造纸机抄制成密度为180~200kg/m3超细玻纤棉毡;

2)将正硅酸乙酯、乙醇和水以1:2~5:0.8~1.5的重量比混合,充分搅拌均匀,滴加盐酸至ph值为4.0~4.5后,加热至50℃~55℃,并保温3.0h~4.0h,即制成硅溶胶;

3)步骤2)所得硅溶胶中加入氢氧化钠溶液调节ph值为7.0~8.0,将步骤1)所得超细玻纤棉毡浸渍于该硅溶胶中,使硅溶胶能均匀渗透到超细玻纤棉毡的内部,保温静置10~20min,形成湿凝胶复合超细玻纤棉毡;

4)步骤3)所得湿凝胶复合超细玻纤棉毡浸渍于含10%~20%(重量百分比)六甲基二硅氮烷的无水乙醇中,于40-60℃老化5h~6h,期间用新配制的老化液置换2次;

5)将步骤4)老化后的湿凝胶复合超细玻纤棉毡取出后,置于以二氧化碳为介质的超临界干燥装置中,在55℃~65℃温度及14.5mpa~15.5mpa压力下进行超临界干燥,以排除湿凝胶复合超细玻纤棉毡中的液体,即得到所述气凝胶复合超细玻纤棉毡。

本发明中将气凝胶复合超细玻纤棉毡置于生物容器的内胆用作液氮吸附材料,由于气凝胶的高孔隙率和纳米级孔径特征,使其不仅可为液氮的存储提供较大的容量,而且能够较好地锁住液氮,并使存储于气凝胶孔隙中的液氮蒸气压和有效蒸发焓更高,从而降低了液氮从气凝胶微孔中蒸发的速度,也减小了因容器晃动或受冲击造成液氮快速蒸发和泄漏的可能性,不仅延长了液氮生物容器的有效工作时间,而且避免了液氮泄漏给工作场所带来的安全问题。

本发明取得的有益效果是:

1)本发明基于之前研究的基础上,提供了一种具有纳米孔网络结构的气凝胶复合超细玻纤棉毡的制备方法及在航空型液氮生物容器中的应用技术。相比不用吸附材料的散装液氮而言,蒸发率降低,一方面可减少因容器晃动或受冲击而增加的液氮蒸发量,从而延长容器的有效低温工作时间,另一方面避免了容器运输时不慎跌倒或器件损坏致使液氮流出所造成的运输场所安全问题。

2)将二氧化硅气凝胶与超细玻纤棉毡复合而成的材料,用于吸附液氮时,液氮被储存于气凝胶的纳米微孔中,也就是说液氮的周围被气凝胶的骨架和玻璃棉纤维包裹,相当于在液氮的周围形成了隔热屏障,因此,在相同条件下相比于“二氧化硅或玻璃纤维毡”而言,填充于生物容器内胆的气凝胶复合玻璃棉毡中的液氮蒸发需要吸收更多的热量从而延长了液氮的蒸发时间,也即延长了液氮容器的工作寿命。

具体实施方式

下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:

本发明以超细玻纤棉为原料,采用湿法特种纸抄造工艺抄制成超细玻纤棉毡作为基材,采用正硅酸乙酯水解制成硅溶胶,将基材浸渍硅溶胶后经凝胶、老化、超临界干燥制成气凝胶复合超细玻纤棉毡。以该气凝胶复合超细玻纤棉毡作为液氮吸附材料,将其填充于航空型液氮生物容器内胆中吸附液氮,并将液氮存储于气凝胶复合超细玻纤棉毡的纳米微孔中,以维持液氮生物容器内的低温贮存环境,从而满足生物材料低温保存要求。

气凝胶复合超细玻纤棉毡制备的具体实施例如下,其中:

憎水率测试方法:gb/t10299绝热材料憎水性试验方法;

燃烧性能的检测标准:gb8624-2012建筑材料及制品燃烧性能分级。

实施例1

a)将10kg超细玻纤棉(叩解度40°sr)和350kg水放入打浆机中疏解20min后,放入配浆池中,加入2‰质量浓度的阴离子聚丙烯酰胺分散剂200ml,然后用硫酸调节ph值至3.0,充分搅拌使纤维分散均匀,采用侧流式圆网造纸机抄制成密度为200kg/m3超细玻纤棉毡。

b)将正硅酸乙酯、乙醇和水以1:2:0.8的重量比混合,充分搅拌均匀,滴加盐酸调节ph值为4.0后,加热至50℃,并保温3.0h,即制成硅溶胶;

c)步骤b)所得硅溶胶中加入氢氧化钠溶液调至ph值为7.0后,将步骤a)所得超细玻纤棉毡浸渍于该硅溶胶中,使硅溶胶能均匀渗透到超细玻纤棉毡的内部,保温静置20min,形成湿凝胶复合超细玻纤棉毡;

d)步骤c)所得湿凝胶复合超细玻纤棉毡浸渍于含10%(重量百分比)六甲基二硅氮烷的无水乙醇中,于50℃老化6h,期间用新配制的老化液置换2次;

e)将步骤d)老化后的湿凝胶复合超细玻纤棉毡取出后,置于以二氧化碳为介质的超临界干燥装置中,在55℃及15.5mpa压力下进行超临界干燥,以排除湿凝胶复合超细玻纤棉毡中的液体,制成气凝胶复合超细玻纤棉毡。该气凝胶复合超细玻纤棉毡密度为218kg/m3,孔隙率为81.8%,憎水率为98.5%,燃烧性能达到a级。

实施例2

a)将10kg超细玻纤棉(叩解度45°sr)和350kg水放入打浆机中疏解25min后,放入配浆池中,加入2‰质量浓度的阴离子聚丙烯酰胺分散剂250ml,然后用硫酸调节ph值至3.5,充分搅拌使纤维分散均匀,采用斜网造纸机抄制成密度为192kg/m3超细玻纤棉毡。

b)将正硅酸乙酯、乙醇和水以1:3.5:1.0的重量比混合,充分搅拌均匀,滴加盐酸调节ph值为4.3后,加热至52℃,并保温3.5h,即制成硅溶胶;

c)步骤b)所得硅溶胶中加入氢氧化钠溶液调至ph值为7.5后,将步骤a)所得超细玻纤棉毡浸渍于该硅溶胶中,使硅溶胶能均匀渗透到超细玻纤棉毡的内部,保温静置15min,形成湿凝胶复合超细玻纤棉毡;

d)步骤c)所得湿凝胶复合超细玻纤棉毡浸渍于含15%(重量百分比)六甲基二硅氮烷的无水乙醇中,于50℃老化5.5h,期间用新配制的老化液置换2次;

e)将步骤d)老化后的湿凝胶复合超细玻纤棉毡取出后,置于以二氧化碳为介质的超临界干燥装置中,在60℃及15.0mpa压力下进行超临界干燥,以排除湿凝胶复合超细玻纤棉毡中的液体,制成气凝胶复合超细玻纤棉毡。该气凝胶复合超细玻纤棉毡密度为206kg/m3,孔隙率为82.4%,憎水率为99.0%,燃烧性能达到a级。

实施例3

a)将10kg超细玻纤棉(叩解度43°sr)和350kg水放入打浆机中疏解30min后,放入配浆池中,加入2‰质量浓度的阴离子聚丙烯酰胺分散剂300ml,然后用硫酸调节ph值至4.0,充分搅拌使纤维分散均匀,采用侧流式圆网造纸机抄制成密度为180kg/m3超细玻纤棉毡。

b)将正硅酸乙酯、乙醇和水以1:5:1.5的重量比混合,充分搅拌均匀,滴加盐酸调节ph值为4.5后,加热至55℃,并保温3.0h,即制成硅溶胶;

c)步骤b)所得硅溶胶中加入氢氧化钠溶液调至ph值为8.0后,将步骤a)所得超细玻纤棉毡浸渍于该硅溶胶中,使硅溶胶能均匀渗透到超细玻纤棉毡的内部,保温静置10min,形成湿凝胶复合超细玻纤棉毡;

d)步骤c)所得湿凝胶复合超细玻纤棉毡浸渍于含20%(重量百分比)六甲基二硅氮烷的无水乙醇中,于50℃老化5.0h,期间用新配制的老化液置换2次;

e)将步骤d)老化后的湿凝胶复合超细玻纤棉毡取出后,置于以二氧化碳为介质的超临界干燥装置中,在65℃及15.0mpa压力下进行超临界干燥,以排除湿凝胶复合超细玻纤棉毡中的液体,制成气凝胶复合超细玻纤棉毡。该气凝胶复合超细玻纤棉毡密度为192kg/m3,孔隙率为82.9%,憎水率为99.2%,燃烧性能达到a级。

应用实施例1:

将市售的玻纤针刺毡(购自于无锡富勝耐火保温材料有限公司)和实施例1步骤e)制得的气凝胶复合超细玻纤棉毡,进行液氮的吸附和蒸发对比实验,实验过程如下:

将裁成10cm×10cm×1.05cm的玻纤针刺毡和气凝胶复合超细玻纤棉毡试样分别称取重量后,置于低温保温桶内,加注液氮浸泡30min,用工具将试样取出,放置于电子秤上称量,并记录试样的重量随时间的变化(实验环境温度为27.4℃,相对湿度74rh%),直至试样重量回复到其未浸渍液氮时的重量时,结束试验。记录液氮蒸发时间,计算出试样单位体积液氮吸附量、液氮蒸发速度,实验结果如表1所示:

表1

表1结果表明:玻纤针刺毡的液氮吸附量明显低于气凝胶复合超细玻纤棉毡,而液氮蒸发速度则快于气凝胶复合超细玻纤棉毡。

应用实施例2:

实验环境温度27.4℃,相对湿度74rh%,采用低温保温桶为容器,称其重量后,将8l液氮(约6464g)注入低温保温桶内,置于电子秤上,记录其蒸发过程重量随时间的变化,直至重量恢复到空桶重量时,实验结束,记录自然蒸发过程花费的时间。

同样地,按低温保温桶的内径裁成圆片体积为8l的气凝胶复合超细玻纤棉毡,平铺于低温保温桶内,称取其重量。按照表1数据,每立方厘米体积的气凝胶复合超细玻纤棉毡可吸附0.4983g液氮,则8l体积的气凝胶复合超细玻纤棉毡应可吸附3.986kg液氮,故在装有气凝胶复合超细玻纤棉毡的低温保温桶中加入约3.986kg液氮,置于电子秤上,记录其蒸发过程重量随时间的变化,直至重量恢复到加注液氮前的重量时,实验结束,记录自然蒸发过程花费的时间。

液氮蒸发时间,与实施例1步骤e)制得的气凝胶复合超细玻纤棉毡吸附液氮后的蒸发时间,进行液氮的蒸发对比实验。对比实验结果如表2所示:

表2

表2结果表明:不填充气凝胶复合超细玻纤棉毡作液氮吸附材料,而纯碎用液氮置于低温保温桶内,充装液氮量虽然有8l之多,但其自然蒸发时间仅53分钟,而低温保温桶内填充气凝胶复合超细玻纤毡后再注入液氮,虽然液氮量仅有4.9l,但其自然蒸发时间却达到了128分钟,表明液氮被吸附到气凝胶复合超细玻纤毡的微孔中后,气凝胶的骨架对液氮形成了隔热屏障,从而大大降低了液氮的蒸发速度。

本说明书所述的内容仅仅是对发明构思实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式。

推荐新闻